黄前久美子:“不嫉妒比自己优秀的人,到底是优点还是缺点呢,我应该说些什么吗。这种小事让我不自觉地思考,有种令人害怕却无法否认的要钻进牛角尖里的感觉,它将我的不成熟摆在眼前,我也因此竭尽全力。”
# Lattice
Let (S,⊑) be a partial order.
(S,⊑) is a lattice if the meet and join of any pair of elements of S always exists.
(S,⊑) is a complete lattice if the meet and join of any subset of elements of S always exists.
# Galois connection
Let (C,⊆) and (A,⊑) be complete lattice, and let α:C→A,γ:A→C.
We say (C,A,α,γ) is a (monotone) Galois connection if for all c∈C,a∈A:
α(c)⊑a⟺c⊆γ(a)
Lemma: In Galois connection, α,γ are monotonic.
Proof:
∵∀c∈C.α(c)⊑α(c)∴∀c∈C.c⊆γ(α(c))∴∀c′⊆c.c′⊆γ(α(c))∴∀c′⊆c.α(c′)⊑α(c)
Similarly we can prove that γ is monotonic.
□.
Equivalent Definition: (C,A,α,γ) is a (monotone) Galois connection if for all c∈C,a∈A:
c⊆γ(α(c)) and α(γ(a))⊑a
Proof:
-
(=>) Assume α(c)⊑a⟺c⊆γ(a).
Because α(c)⊑α(c), therefore c⊆γ(α(c)). Similarly it ca be proved that α(γ(a))⊑a because γ(a)⊆γ(a).
-
(<=) Assume c⊆γ(α(c)) and α(γ(a))⊑a.
If α(c)⊑a, then since γ is monotonic:
c⊆γ(α(c))⊑γ(a)
Similarly, we can prove that if c⊆γ(a), then α(c)⊑a…
□.
Lemma: idC≤γ∘α, idA≥α∘γ.
Proof: By equivalent definition.
□.
Lemma: α preserves suprema and γ preserves infima. i.e., given a subset X⊆C,Y⊆A:
α(x∈X⋃x)=x∈X⋁α(x)γ(y∈Y⋀y)=y∈Y⋂γ(y)
Proof: 我们只需要证明,α(⋃x) 是{α(x)∣x∈X} 的最小公共上界。
因为∀x∈X.x⊆⋃x,那么根据单调性有∀x∈X.α(x)⊑α(⋃x). 下面我们证明它是最小的公共上界。
假设还有一个公共上界y : ∀x∈X.α(x)⊑y, 根据 Galois connection 就有∀x∈X.x⊆γ(y). 因此⋃x∈Xx⊆γ(y) (γ(y) 是X 的一个公共上界,故大于其最小公共上界)。 那么就有α(⋃x)⊑α(γ(y))⊑y。因此,α(⋃x) 是所有公共上界中最小的一个。下界同理。
□.
Lemma: α∘γ∘α=α and γ∘α∘γ=γ.
Proof: Since γ∘α≥idC and α∘γ≤idA:
α∘γ∘α(c)=α∘(γ∘α)(c)⊒α(c)α∘γ∘α(c)=(α∘γ)∘α(c)⊑α(c)
thus α∘γ∘α=α. And the other cas e is similar.
□.
# Galois Embedding
Let (C,A,α,γ) a Galois connection.
It forms a Galois embedding if α∘γ=idA.
Lemma: Given a Galois connection (C,A,α,γ), the following conditions are equivalent:
-
It forms a Galois embedding.
-
α is a surjective function.
-
γ is an injective function.
Proof:
-
(1 => 2) 若α∘γ=idA,那么显然,∀a∈A.∃y=γ(a) 使得α(y)=a。故α 是满射。
-
(2 => 3) 若α 是满射,反设存在a1=a2∈A 使得γ(a1)=γ(a2)≜c。因为α 是满射,所以存在c1,c2∈C 使得α(c1)=a1,α(c2)=a2。所以有:
α(c)=α(γ(a1))⊑a1α(c)=α(γ(a2))⊑a2
又因为c1⊆γ(α(c1))=γ(a1)=c,同理也有c2⊆c,所以有:
a1=α(c1)⊑α(c)⊑a1a2=α(c2)⊑α(c)⊑a2
因此可以夹逼出a1=α(c)=a2,矛盾。
□ 证毕。
upd:实际上 Galois connection 可以看作两个 poset category 间的 adjunction